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The computation of surface fluxes over land and ice raises a variety of

issues with regard to the exchange grid and the implicit treatment of fluxes

within the atmosphere and within the land and ice models. Criteria that

help us choose between alternative schemes are

• Conservation: the quantity transported across the surface must be con-

served;

• Stability: the scheme should be as stable as possible and free of unphysical

oscillations so that the flux computation itself does not introduce any limita-

tions on model time steps. In particular, one should be able to take the limit

of inifinitesimal land heat capacity, or very high vertical resolution near the

surface in the atmosphere;

• Modularity: the land, ice, and atmosphere models should be unaware of

the grids being used by the other models in the system.

1 A starting point

Consider the following simple model, in which we will assume that the at-

mospheric and land grids are identical for the time being.

cA∂TA/∂t = F (TA, TL) (1)

cL∂TL/∂t = −F (TA, TL) (2)

The atmosphere and the land exchange the heat flux F . As the simplest

case, set F (TA, TL) = −γ(TA − TL). In the uncoupled case (TL =constant)

the simplest forward time step is

cA

(T i+1

A − T i
A)

∆t
= −γT i

A (3)

which blows up if ξA > 2 and produces oscillatory rather than monotonic

decay for 1 < ξA < 2, where ξA ≡ γ∆t/cA. This is unacceptable. A centered

step, with 0.5γ(T i+1

A +T i
A) on the RHS, is stable in the sense that all solutions

are damped, but when ξA > 2 it produces oscillatory decay, which is still

unacceptable. The standard procedure is to use a backward time step

cA

(T i+1

A − T i
A)

∆t
= −γT i+1

A (4)
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which is stable and decays monotonically in all cases. (In fact, in some atmo-

spheric models, the surface fluxes are computed with a ”super backwards”

scheme, in which, on the RHS, TA → αT i+1

A + (1 − α)T i
A, with α > 1)

The same argument holds for the coupled system, (1) and (2). The

fully explicit forward scheme is unstable for either large ξA or ξL, where

ξL ≡ γ∆t/cL, and the ’half’ explicit schemes F (T i+1

A , T i
L), F (T i

A, T i+1

L ) also

do not allow arbitrary time steps or heat capacities. The fully implicit scheme

F (T i+1

A , T i+1

L ) is the preferred choice.

(If conservation were not a requirement, other options would be available,

such as

cA

(T i+1

A − T i
A)

∆t
== F (T i+1

A , T i
L) (5)

cL

(T i+1

L − T i
L)

∆t
= −F (T i+1

A , T i+1

L ) (6)

which has the advantage of decoupling the two equations. We require the

FMS flux exchange module to conserve exactly, ruling out such options.)

Returning to a general expression for F (T i+1

A , T i+1

L ), we replace it by the

first term in its Taylor expansion about its value F0 at the time step i:

cA

∆t
∆TA = F0 +

∂F

∂TA

∆TA +
∂F

∂TL

∆TL (7)

cL

∆t
∆TL = −F0 −

∂F

∂TA

∆TA −

∂F

∂TL

∆TL (8)

where ∆T ≡ T i+1
− T i. Note that this linearization does not destroy exact

energy conservation; we have simply modified the form of the exchanged

flux slightly. The linearization is a device to avoid iterating for the implicit

solution. Once one has chosen a backwards scheme, the iterated solution is,

in general, no more accurate than the solution with linearized fluxes. The

only disadvantage of the latter is a ”diagnostic” one: the fluxes exchanged

between the two models cannot be considered precisely as a function F of

atmospheric and land states at particular times; they are also a function of

the change in state from one time step to the next.

We now have two equations that can be solved simultaneously for the

two unknowns ∆TA and ∆TL. This is straightforward, of course, but we

would like to formulate things so that the two models remain as modular
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as possible, without being unnecesarily intertwined. For this purpose, it is

useful to think of first solving the atmospheric equation, which provides ∆TA

as a (linear) function of ∆TL.

∆TA = e∆TL + f (9)

In this case

f ≡ ΓF0 (10)

and

e ≡ Γ
∂F

∂TL

(11)

where

Γ ≡ (
cA

∆t
−

∂F

∂TA

)−1 (12)

Using this linear relation, ∆TA can be eliminated and the land model can

be recast into the form

cL

∆t
∆TL = −(α + β∆TL) (13)

which is then easily solved for ∆TL. Here

α ≡ F0 +
∂F

∂TA

f (14)

β ≡

∂F

∂TL

+
∂F

∂TA

e (15)

Once ∆TL is known we can return to (9) and compute ∆TA

To summarize this procedure –

• Compute

F0,
∂F

∂TA

,
∂F

∂TL

(16)

• compute e and f , and then α and β.

•ask the surface model(s) to compute the change in surface temperature,

given a flux of the form α + β∆TL

• given this change in the surface temperature, ask the atmosphere to update

the atmospheric temperature using (9).
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2 Implicit fluxes within the atmosphere

We need several generalization of this procedure for the flux exchange module

in FMS. We first interpret TA as referring to the ”lowest atmospheric model

layer”. (In the simplest energy balance atmospheric models, this layer could

be the entire atmosphere.) We now need to leave open the possibility that

there are atmospheric fluxes into this atmospheric box from above that are

treated implicitly.

When there are two distinct processes in a model that must both be

treated implicitly, it is not necessarily a requirement that the implicit com-

putations be coupled. One can instead use some time-splitting procedure in

which one computes the effects of process A as if process B were not present

or in which B is treated explicitly, then uses the resulting state of the system

as input into an implicit computation of the effects of B.

In a GCM the vertical diffusive fluxes are generally treated implicitly; fur-

thermore, the diffusive flux across the top of the lowest atmospheric grid box

can be closely related to the surface flux, especially when this lowest atmo-

spheric box is very thin. (Quite often we pretend that the lowest atmospheric

layer lies completely within the ”constant flux layer” within the atmospheric

turbulent boundary layer, so as to justify the use of Monin-Obukhov simi-

larity theory, in which case the diffusive flux at the top of the lowest layer

should be essentially the same as the surface flux.) Therefore, not only is it

desirable to treat the vertical diffusion within the planetary boundary layer

implicitly, but we need to treat the surface fluxes and the vertical diffusive

fluxes near the surface as part of the same implicit step.

Consider, therefore,

cA∂TA/∂t = F (TA, TL) + FA(TA, ξA) (17)

where FA is a flux into the box from above which depends on TA and other

atmospheric variables ξA (for the most relevant example of a local diffusive

flux, ξA is the temperature at the level above the lowest model level). Eval-

uate all variables on the RHS at t = i + 1, and proceed with a linear Taylor

expansion as above. The flux FA is now approximated by

FA(TA, ξA) = FA(T i
A, ξi

A) +
∂FA

∂TA

∆TA +
∂FA

∂ξA

∆ξA (18)
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We now need to assume the existence of a precomputation within the atmo-

spheric model which relates ∆ξA to ∆TA:

∆ξA = eA∆TA + fA (19)

with the result

FA(TA, ξA) = (FA)0 +
dFA

dTA

∆TA (20)

where
dFA

dTA

≡

∂FA

∂TA

+ eA

∂FA

∂ξA

(21)

(FA)0 ≡ FA(T i
A, ξi

A) + fA

∂FA

∂ξA

(22)

We can now solve our coupled atmosphere-land system exactly as before

by modifying the definion of Γ:

Γ ≡ (
cA

∆t
−

∂F

∂TA

−

dFA

dTA

)−1 (23)

and replacing F0 by F0 + (FA)0

For the relevant case of vertical diffusion, the atmospheric precomputa-

tion is easily accomplished. The tridiagonal matrix that results from the

implicit diffusion operator is most efficiently solved by a standard two-sweep

algorithm. Starting at the top of the atmosphere, one uses the matrix ele-

ments to recursively generate the coefficients ek and fk that one can then use

to generate the temperature increments in an upeward recursive sweep of an

equation of the form

∆Tk−1 = ek∆Tk + fk (24)

where the index k increases downwards. If the last grid box is k = N , then

eN and fN play the role of eA and fA above. The flux exchange module

does not need to know the details of this computation; it only requires the

resulting modified flux and derivative defined by (21) and (22).
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3 Leapfrog

We also need to allow for the possibility that the atmosphere is integrated

with a leapfrog step and the land with a forward step – a common combina-

tion in practice. We then have, leaving FA out for simplicity,

cA

T i+1

A − T i−1

A

2∆t
= F (T i+1

A , T i+1

L ) (25)

cL

T i+1

L − T i
L

∆t
= F (T i+1

A , T i+1

L ) (26)

Energy will still be conserved every two time steps in the sense that

cA

T i+2

A + T i+1

A

2
+ cLT i+2

L = cA

T i
A + T i−1

A

2
+ cLT i

L (27)

We now expand F about the temperatures T i−1

A and T i
L

F (T i+1

A , T i+1

L ) ≈ F (T i−1

A , T i
L) +

∂F

∂TA

∆TA +
∂F

∂TL

∆TL (28)

where now

∆TA ≡ T i+1

A − T i−1

A (29)

∆TL ≡ T i+1

L − T i
L (30)

The rest of the derivation proceeds exactly as before. We need only be careful

that 2∆t is substituted for ∆t in the expression for Γ.

4 Evaporation

Now consider the case in which we have evaporation as well as sensible heat

flux. The evaporation E, might be a function of a variety of things, but the

only functional dependence we are concerned with is that part that is treated

implicitly. In the current implementation of FMS (Eugene) E as an implicit

function of qA, the specific humidity in the atmosphere, and TL, the surface

temperature.

cA∂TA/∂t = F (TA, TL) (31)
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∂qA/∂t = E(qA, TL) (32)

cL∂TL/∂t = −F (TA, TL) − LE(qA, TL) (33)

After a Taylor’s expansion as above, we can solve the atmospheric equa-

tion for ∆TA as a function of ∆TL as before:

∆TA = eT ∆TL + fT (34)

where a subscript T has been added to e and f We can also solve for

∆qA = eq∆TL + fq (35)

The equation for eq and fq is the same as that for e and f , substituting the

evaporation E for F . If the atmosphere uses a leapfrog time step we must

once again remember to use 2∆t as the time step in these computations.

Implciit atmospheric fluxes can be treated just as before. We can also define

αq ≡ E0 +
∂E

∂qA

fq (36)

βq ≡
∂E

∂TL

+
∂E

∂qA

eq (37)

The job of the surface model is unchanged – compute the change in surface

temperature given a surface energy flux of the form:

α + β∆TL (38)

The difference is that now the values passed to the surface model are

α = αT + αq (39)

and

β = βT + βq (40)
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5 Long wave radiation at the surface

In a climate model, there are radiative fluxes as well as fluxes of sensible and

latent heat at the surface, which must be accounted for in the surface energy

balance. Typically, short wave fluxes are treated explicitly, but the upward

longwsave flux is treated implicitly, as it can be the dominant damping agent

of surface temperature in some regions. The only changse in the equations

that are required are the modifications to α and β resulting from the flux

and its derivative with respect to surface temperature.

(There are issues here wtih regard to the fact the atmospheric radiative

computation in FMS is explicit, and generates heating rates which are not

modified when the surface modules determine ∆TL and the correspondingly

modified upward long wave flux. In effect, this modification to the long wave

flux is assumed to pass through the atmosphere to space without absorption.

A better assumption might be to absorb this modification to the flux in the

lowest atmospheric layer?)

6 The exchange grid

Now suppose that the atmosphere and the land or ice models are on differ-

ent grids. We define an exchange grid whose boundaries are determined by

overlaying the boundaries of the atmosphere cells with those of the surface

models. (See documentation of exchange grid module for further discus-

sion of this exchange grid.) An atmospheric cell, or ice, land, or ocean cell,

contains a finite set of exchange grid cells. As long as the flux is defined

unambiguously on the exchange grid, and if the flux into an atmosphere or

land surface cell is just the area-weighted mean over the exchange grid cells

that it contains, then the fluxed quantity will be conserved.

Assume first that the fluxes are computed explicitly
cA

∆t
∆TA = F

A
(41)

cL

∆t
∆TL = F

L
(42)

The overlines refer to averages over the exchange cells within either the at-

mosphere or the surface cell
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There are some problematic aspects of this interpolation scheme (which

are unaffected by implicit corrections to these fluxes). Most relevant in this

context is that the staggering of the grid and the resulting averaging results

in artificial horizontal mixing. A disturbance initally localized at one grid cell

on the surface will spread to other surface cells even though the exchanges

in the unapproximated model are completely local.

If we now try to make the model fully implicit as before, we are in trouble

because of this coupling. The flux sensitivities as well as the fluxes themselves

must be defined on the exchange grid, and the equations would be

cA

∆t
∆TA = F0

A
+

∂F

∂TA

A

∆TA +
∂F

∂TL

∆TL

A

(43)

and
cL

∆t
∆TL = F0

L
+

∂F

∂TA

∆TA

L

+
∂F

∂TL

L

∆TL (44)

In general, all grid points in the atmosphere are now coupled with all points

in the surface model(s). Solution would require iteration, which is a source of

complexity that is totally inappropriate given that the underlying dynamics

is purely local. As we have seen, explicit flux computation also generates arti-

ficial non-local coupling as a function of time – the fully implicit computation

spreads the influence widely within one time step.

One straighforward alternative is to do everything related to the implicit

time-stepping on the exchange grid, producing temperature and moisture

increments defined on the exchange grid, and, as a last step, averaging these

onto the grids of the respective models. One difficulty with this scheme

is that in actual models the processes involved in the implicit computation

of surface temperatures and fluxes can be rather complicated, and these

parts of the models would have to compute on the exchange grid, whose

dimensions can get quite large. It turns out that one can avoid doing the

atmospheric diffusion computation on the exchange grid, but one still ends

up with the surface component models split into a part computing on the

exchange grid and a part on the model’s own grid, in a way that causes

considerable confusion. (An earlier version of our model was constructed in

this way and rejected for these reasons.) It is preferable that the component

models know nothing about the exchange grid.
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While it is not clear that it is the ideal solution, the following scheme is

the one currently implemented in FMS (Eugene). It treats the atmospheric

side of the model differently from the surface compnent models (which we

refer to as ”land” here).

Fluxes and derivatives of fluxes are computed on the exchange grid. The

flux is defined on the exchange grid to be

F0 +
∂F

∂TA

∆T ∗

A +
∂F

∂TL

∆TL (45)

where ∆T ∗

A, computed as described below, varies across exchange cells within

one atmospheric cell, while ∆TL is uniform across the entire land cell.

Start as if one were computing the implicit temperature tendencies on

the exchange grid and compute explicit fluxes and flux derivatives on the ex-

change grid. Continue by computing e and f (9) and then α and β (15) on the

exchange grid. Average α and β over the surface model grid. Then instruct

the surface model to use these averaged fluxes and derivatives to compute

its new surface temperature implicitly. Copy this surface temperature in-

crement to the exchange grid and then compute the atmospheric tendency

in the lowest model level on the exchange grid. Average this atmospheric

tendency over the atmospheric grid as the final step. The only distinction

between this scheme and that in (43) is that the fluxes are consistent with

the atnmospheric increments on the exchange grid (∆T ∗

A) before averaging,

rather than with the final averaged increments.

7 Algorithm

Summarizing the final algorithm:

• We start with the state of all component models defined at time step i, or

i−1 in the case of leapfrog models. The first step is to move everything that

is needed to compute the surface fluxes onto the exchange grid. We then

compute the explicit estimate of these fluxes on the exchange grid and all of

the relevant derivatives. One must keep in mind that these flux values are

temporary, and will be corrected by the implicit part of the computation,
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using these derivatives. This work is performed by a call to the subroutine

flux calculation..

• Assume that the atmospheric model has computed the increment in the

atmospheric temperature and specific humidity due to all terms treated ex-

plicitly (more precisely, all explicit terms that are included before the im-

plicit vertical diffusion is applied.) From the myopic viewpoint of the surface

exchange module, the only quantities of interest are the increments in tem-

perature and specific humidity in the lowest atmospheric layer. If the model

includes vertical diffusion, these increments include the effect of the explicit

diffusive flux across the top of the lowest atmospheric layer If the vertical

diffusion is implicit, then this increment must be computed with the modi-

fied flux (22) and one must also provide the ”total” derivative (21), for both

temperature and moisture. If there is no implicit flux across the top of the

lowest atmospheric layer, then these derivatives must be set to zero.

• The surface exchange module assumes that the resulting increments and

derivatives are packaged in a particular way within a data type defined and

allocated within the atmospheric model. In addition to a variety of other field

included in this type that are not involved in the implicit computation (such

as precipitation or the net shortwave flux), five spatial fields of information

are passed for this implicit algorithm: besides the increments of temperature

and humidity in the lowest atmospheric layer, and the derivatives of the heat

flux and the moisture flux at the top of this layer, the atmospheric time step

(2∆t for leapfrog) divided by the mass of the lowest atmospheric layer is also

passed as part of this type.)

• Next, compute αT , αq, βT , βq on the exchange grid and average these onto

the land and ice grids. This is performed by subroutine flux down from atmos

• Assume that the land and ice models are now instructed to compute the

new surface temperatures.

• Move the increments in surface temperature to the exchange grid, and

compute the increment in the temperature and moisture of the lowest atmo-

spheric layer. Also correct the surface sensible heat, evaporation, and long-
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wave radiation. Then average the increments of temperature and moisture

in the lowest atmospehric layer onto the atmospheric grid. This is performed

by subroutine flux up to atmos

• Assume that the atmospheric model can now take these lowest layer in-

crements and finalize the upward sweep of the tridiagonal elimination to

complete the implicit computation of vertical diffusion.
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